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Project	Summary	
This project focused on making high precision measurements in the near-field of fault traces 

that have ruptured in earthquakes or that are creeping continuously. Until recently, this has 
been a largely unstudied aspect of faulting because of the difficulty in making the near-field 
measurements. Previous work at UH has examined methodology to determine 3D displacement 
fields from overlapping temporally spaced point clouds (e.g. (Zhang, Glennie and Kusari 2015a, 
Glennie et al. 2014)), applying predominantly a technique called iterative closest point (ICP), 
e.g. (Besl and McKay 1992).  The project initially focused on a detailed evaluation of current 
state of the art techniques, including ICP, and optical image correlation (Leprince et al. 2007) to 
determine the resolution and accuracy that could be achieved using these methods.  Our 
overall analysis indicated that these current methods were only capable of decimeter level 
accuracy.  We therefore examined point clouds based methods where we used apriori 
knowledge of the presence of geometric primitives (shapes) in the point data in order to 
provide additional geometric constraints to the displacement estimate solution.  Preliminary 
results indicate that cm-level displacement estimation may be possible using these constraints.  
However, significant additional work in automated primitive extraction and matching is 
required to automate these processes and enable high-resolution and high accuracy estimates 
of displacement in the near field. 
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Significant	Research	Results	

Evaluation	of	Current	Optical	and	3D	Point	Cloud	Methodologies	

The text in this section is a summary of the peer reviewed journal publication pertaining to 
this work: 

Ekhtari, N., and Glennie, C.L., "High-Resolution Mapping of Near-Field Deformation With 
Airborne Earth Observation Data, a Comparison Study," IEEE Transactions on Geoscience and 
Remote Sensing, 2018, 56(3), 1598-1614. 

 
We first investigated different approaches that have been presented for estimating near-

field surface displacements.  Although a number of studies had been undertaken, using 
different techniques and observations, there had not been a full comparison undertaken on a 
single earthquake comparing each of these techniques using different input high-resolution 
remote sensing observations. 

We therefore undertook an investigation into different approaches for high-resolution 
mapping of near-field surface displacement for strike-slip earthquakes.  We compared the use 
of airborne laser scanning (ALS) and high-resolution optical imagery as primary deformation 
observables. To analyze these sources observations we applied two widely used techniques (1) 
optical image correlation, using the COSI-Corr algorithm (Leprince et al. 2007) and (2) point 
cloud differencing techniques using the iterative closest point (ICP) algorithm (Zhang, Glennie 
and Kusari 2015b). We then compared the performances of these techniques for estimating 
near-field deformation using pre- and post-event high-resolution ALS and airborne imagery of 
the August 24, 2014 Mw 6.0 Napa, California earthquake.  The dataset was ideal for this 
purpose as the pre- and post-event datasets both acquired imagery and lidar observations 
simultaneously, eliminating any possible temporal effects in the comparisons.  The estimates of 
deformation were then compared with field observations of displacement along the fault 
collected immediately after the earthquake. agree with field observations within a decimeter, 
at the expected accuracy level of the data.  

The results of the analysis are shown in the four figures below, which were extracted 
directly from the manuscript.  The first figure (top left – labeled as Fig. 4) shows the results 
using optical image correlation (COSI-Corr).  While the overall displacement result is accurate at 
~decimeter scale in unvegetated areas, the algorithm does not perform well in areas with 
vegetation (see blue ellipses). Figure 5 below shows that the use of ICP on the ALS point cloud 
results in a smooth estimate of the displacement.  The overall accuracy is at the decimeter 
level, but there are none of the anomalies due to vegetation, as lidar observations are able to 
penetrate vegetation to get to the ground underneath.  The final analysis, in Figure 6 is a hybrid 
approach, where the high-resolution imagery is converted to a 3D point cloud using structure 
from motion software, and then the resultant point cloud is run through the ICP algorithm.  



Again, accuracy in unvegetated areas is similar to lidar at the decimeter level, but 
underperforms in areas of vegetation.  A comparison of fault displacement profiles along the 
rupture, compared with field observations is finally given in Figure 8 below.  In general the 
agreement is confirmed to be at ~decimeter level. Overall, we conclude that ALS data are 
generally better than imagery for estimating near-field deformation regardless of the 
estimation methodology and that the iterative closest point algorithm was more effective at 
recovering the displacement signal.  However, given the high-resolution of the data, it seems 
unlikely that accuracy better than the level observed here would be possible using current ICP 
techniques. 

 

 



 
 

Use	of	Planar	Constraints	To	Improve	Displacement	Estimation	Accuracy	

The text in this section is a summary of the peer reviewed journal publication pertaining to 
this work: 

Kusari, A., Glennie, C.L., Brooks, B.A., Ericksen, T.L., "Precise Registration of Laser Mapping 
Data by Planar Feature Extraction for Deformation Monitoring." IEEE Transactions on 
Geoscience and Remote Sensing, 2019, 57 (6), 3404-3422. 

 
Although the ICP techniques applied to ALS datasets have been shown to reveal near-field 

surface deformation, they are only able to offer estimates with approximately decimeter scale 
accuracy.  While the ICP algorithms work directly on the irregular point cloud dataset, the 
approach does not make any underlying assumptions about the scene that is depicted within 
the point cloud.  While this methodology is very general, and applies to all situations, it does 
not take full advantage of any potential a-priori knowledge about the scene imaged in the point 
cloud.  For example, in an urban environment, a number of the LiDAR returns will be 
measurements to buildings, rooftops, and other manmade objects.  These manmade objects 
have known geometric properties, and these could be exploited to strengthen the solution for 
the spatial change between the point clouds, analogous to the use of persistent scatterer 
observations employed with differential radar observations (Hooper et al. 2004, Ferretti et al. 
2004).  We would therefore like to take advantage of known structure in the point clouds. Our 
initial attempt to improve the quality of the offset estimate obtained from the difference 
between two point clouds, examined constraining the LiDAR observations to planar surfaces, 
which are found in abundance in urban and suburban areas. 



If we consider that we have two temporally spaced LiDAR point clouds, with an unknown 
spatial difference between them, we can then define the rigid body transformation that will 
align the two point clouds as: 
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where, 	𝑟&3 = 	 [𝑋 𝑌 𝑍]&3 is the final transformed LiDAR point clouds,  𝑟-3 = [𝑋 𝑌 𝑍]-3  
are the initial offset LiDAR points, DX, DY, DZ are the point cloud shifts, and a, b, g are the 
angular offsets between the initial and final point cloud.  Note that the formulation in equation 
1 assumes that the angular offsets are small (less than 1°) which will always be the case when 
comparing two properly georeferenced point clouds referenced to the same geodetic datum.  
For each point observation, the optimized rigid body transformation parameters can be 
determined by a least squares solution given the following observational model (Skaloud and 
Lichti 2006): 
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where 𝑔⃗ = 〈𝑔=, 𝑔>, 𝑔?, 𝑔@〉,  are the parameters of the planar surface, that are used as 
constraints in the solution of the position and orientation offsets between the point clouds.  
Equation two applies to all n points in the final point cloud, constrained to all i observed planar 
surfaces, where n >> i. 

We first developed an automated algorithm for plane extraction, based on octree point 
cloud segmentation with subsequent region growing – the process is highlighted in Figure 1 
below.  This allowed an automatic identification of planar surfaces which could then be used for 
constraining the least squares solution. 

 

 



The analysis was carried out on both airborne laser scanning, and mobile laser scanning 
datasets collected before and after the August 24, 2014 Mw 6.0 Napa, California earthquake. 
The ALS data, similar to above allowed the determination of coseismic slip, since the data was 
collected pre- and post-event.  The MLS datasets were both collected post event 
(approximately 8 and 38 days post earthquake), and therefore were examined to detect the 
presence of afterslip.  The results from both the ALS and MLS datasets were compared with 
alinement array points located on the primary fault (Hudnut et al. 2014). A summary of the 
results are presented in the Tables below.  The first table shows the estimate from ALS data 
(coseismic) compared to that measured at alinement array station NLOD.  The second table 
shows results from MLS differences (afterslip) compared to the alinement array stations NLAR 
and NWIT. 

 

TABLE I 
COMPARISON OF HORIZONTAL FAULT-PARALLEL ALS DISPLACEMENT ESTIMATE TO NLOD ALINEMENT ARRAY STATION ESTIMATE 

FOR JUNE 2014-SEPTEMBER 2014 FOR NAPA FAULT IN THE BROWNS VALLEY NEIGHBORHOOD 

 
Displacements  
∆X (in m) 
∆Y  (in m) 
∆Hz (in m) 

0.035 ± 0.0134-
0.0042 ± 0.0078 

0.317 ± 0.0208 

∆Hz (fault par) (in m) 0.313 ± 0.0192 
∆Hz (NLOD) (in m) 0.309 

 
TABLE 2 

AFTERSLIP ESTIMATES FOR NAPA VALLEY FAULT AT SOUTH RURAL NAPA FROM MOBILE LASER SCANNING 

 
Displacements  
∆X (in m) 
∆Y  (in m) 
∆Z (in m) 
∆Hz (in m) 

0.0105 ± 0.0027 
-0.0623 ± 0.0047 
0.0161 ± 0.0089 

0.0632 
∆Hz (fault par) (in m) 0.0583 
∆Hz (NLAR) (in m) 0.058 
∆Hz (NWIT) (in m) 0.062 

 
Overall, the constraints on planar surfaces suggest that sub cm estimates of displacement 

may be possible with lidar observations if we are able to constrain the lidar points to known 
surface observations.  While the results are promising, there are also significant shortcomings 
in the analysis.  First, and most obviously, it requires an urban environment where manmade 
structures provide the planar surfaces – this is obviously not possible in rural areas. For this 
initial proof of concept we also constrained the solution using all of the planar surfaces.  This 
significantly limited the spatial resolution of the results.  The constraint was necessary because 
single planes are sensitive to movement only along their normal direction – therefore an 
individual estimate of motion cannot be obtained by a single plane. 



Machine	Learning	Approaches	for	Automated	Determination	of	Features		

The text in this section is a summary of the peer reviewed journal publication currently in 
preparation entitled: 

Zhu, X., Glennie, C.L., Brooks, B.A., Ericksen, T.L., "Automated Near-Field Deformation 
Estimates from Mobile Laser Scanning for the 2014 Mw 6.0 South Napa Earthquake." IEEE 
Transactions on Geoscience and Remote Sensing, (in preparation). 

 
The planar constraints methodology described above is ideally suited to urban and 

suburban areas where a variety of man-made structures will provide a plethora of planar 
surfaces to use as persistent targets.  However, in rural environments, such as that along the 
CSAF (creeping section of the San Andreas Fault), we cannot expect to find a sufficient number 
of man-made structures for displacement estimation.  Fortunately, the mathematical model 
given above in equation (2) can be modified to provide constraints using mathematical 
representations of natural surfaces or other geometric primitives.  These extensions to natural 
features and primitives have previously been used to calibrate airborne laser scanning 
instruments, e.g. (Filin 2003, Habib et al. 2005), and we adapted this methodology to provide 
estimations of displacement in rural areas. 

We propose an automated change detection method using semantic primitives to reveal 
surface ruptures in the earthquake near field. Using mobile laser scanning (MLS), we acquired 
3D point clouds representing the geometry of the earthquake rupture for the 2014 M6.0 South 
Napa earthquake (Brooks et al. 2017). Accumulated coseismic response is detected by 
monitoring deformation of linear primitives representing the geometry of vineyard rows which 
were straight prior to the earthquake. PointNet(Qi et al. 2017), a machine learning application 
specifically tailored to unorganized 3D point clouds is used to automatically segment point 
clouds and classify fence posts that are later modeled as cylindrical primitives – see Figure 1 
below. Post seismic afterslip is detected by tracking these primitives between epochs of MLS 
data collected 7 and 34 days after the earthquake and it is shown that this method has the 
ability to detect subtle ground displacement in the near field. The detection results provide new 
observations of shallow fault slip with high-resolution and accuracy which are important for the 
study of rupture mechanisms for active faults. The proposed semantic primitives can be 
implemented in automated point cloud-based change detection and automatic point cloud 
segmentation. 

Afterslip is estimated using the displacement of cylindrical primitives between two MLS 
surveys. To model the cylindrical primitives, representing posts on the scanned vineyard rows, 
point clouds need to first be segmented. In previous work, the segmentation was manually 
performed (DeLong et al. 2015)The process is complex and extremely time-consuming which 
limits the coverage of displacement estimates. Here we implement a deep neural network – 
PointNet to automatically segment MLS point clouds. The segmented point clouds are later 



filtered using random sample consensus (RANSAC) and modeled as primitives using a least 
squares adjustment. Changes are derived by tracking the displacement of the cylindrical 
primitives between two epochs of MLS data. 

PointNet proposed by (Qi et al. 2017) is a unique deep neural network that directly works 
on 3D point clouds. The network learns a set of optimization functions selecting informative 
points and aggregates the optimization results as global descriptors. Fully connected layers and 
symmetric max-pooling functions are implemented to handle the irregular format of point 
clouds.  

 
Figure 1: Segmentation example from a single vine row showing segmented MLS point 

cloud using PointNet. 
 
For supervised learning on point clouds, we set up a vine row training set where 120 

scanned vineyard row point clouds are manually labeled, consisting of 9 million labelled points 
in total. Every point within this set falls into one of four categories – fence posts, vegetation, 
guide wire, and ground. Random sampling from this training set generates over 40 thousand 
training samples, where each sample consists of 2048 points in a single vine row. The train-
validation-test split is 7:1:2. Figure 1 shows a segmentation example where point clouds are 
automatically segmented into the four categories. After training, the network is capable of 
processing all 2600 scanned vineyard rows, which consists of over 300 million MLS laser points. 
The point clouds were automatically segmented into four categories and the fence posts were 
then extracted for cylindrical primitives modeling. 

The segmented point clouds were modeled as cylindrical primitives and then pre- and post-
deformed primitives were clustered by their locations. A Gauss-Helmert model is used for least 
squares fitting of cylindrical primitives: 



 
 
where the inputs are MLS point clouds for a single post [xobs, yobs, zobs]T with measurement 
uncertainties e. Point clouds are shifted and rotated so that a cylinder can be estimated at the 
center of each cloud with a vertical axis. The estimated parameters p are shift components 
(X,Y), and rotation angles w, f  for the x- and y-axis. The radius r of the cylinder is fixed at 5 
inches (12.7 cm) for a typical anchor post. 
 Preliminary results from the cylindrical pole tracking are shown in Figure 9 below. Our 
initial analysis shows consistency between individual cylinders closely spaced at the ~cm level.  
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